Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 152(1): 230-243, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36822481

RESUMO

BACKGROUND: Familial Mediterranean fever (FMF), caused by mutations in the pyrin-encoding MEFV gene, is characterized by uncontrolled caspase-1 activation and IL-1ß secretion. A similar mechanism drives inflammation in cryopyrin-associated periodic fever syndrome (CAPS) caused by mutations in NLRP3. CAPS and FMF, however, result in largely different clinical manifestations, pointing to additional, autoinflammatory pathways involved in FMF. Another hallmark of FMF is extraordinarily high expression of S100A8 and S100A9. These alarmins are ligands of Toll-like receptor 4 and amplifiers of inflammation. However, the relevance of this inflammatory pathway for the pathogenesis of FMF is unknown. OBJECTIVE: This study investigated whether mutations in pyrin result in specific secretion of S100A8/A9 alarmins through gasdermin D pores' amplifying FMF pathology. METHODS: S100A8/A9 levels in FMF patients were quantified by enzyme-linked immunosorbent assay. In vitro models with knockout cell lines and specific protein inhibitors were used to unravel the S100A8/A9 secretion mechanism. The impact of S100A8/A9 to the pathophysiology of FMF was analyzed with FMF (MEFVV726A/V726A) and S100A9-/- mouse models. Pyrin-S100A8/A9 interaction was investigated by coimmunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay studies. RESULTS: The S100A8/A9 complexes directly interacted with pyrin. Knocking out pyrin, caspase-1, or gasdermin D inhibited the secretion of these S100 alarmins. Inflammatory S100A8/A9 dimers were inactivated by tetramer formation. Blocking this inactivation by targeted S100A9 deletion in a murine FMF model demonstrated the relevance of this novel autoinflammatory pathway in FMF. CONCLUSION: This is the first proof that members of the S100 alarmin family are released in a pyrin/caspase-1/gasdermin D-dependent pathway and directly drive autoinflammation in vivo.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Febre Familiar do Mediterrâneo , Animais , Camundongos , Alarminas , Calgranulina A/genética , Caspases/metabolismo , Síndromes Periódicas Associadas à Criopirina/genética , Febre Familiar do Mediterrâneo/genética , Gasderminas , Inflamação , Pirina/genética
2.
Nat Commun ; 12(1): 6699, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795266

RESUMO

Candida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis. Here we show disruption of GSDMD, a known inflammasome target and key pyroptotic cell death mediator, paradoxically alleviates candidiasis, improving outcomes and survival of Candida-infected mice. Mechanistically, C. albicans hijacked the canonical inflammasome-GSDMD axis-mediated pyroptosis to promote their escape from macrophages, deploying hyphae and candidalysin, a pore-forming toxin expressed by hyphae. GSDMD inhibition alleviated candidiasis by preventing C. albicans escape from macrophages while maintaining inflammasome-dependent but GSDMD-independent IL-1ß production for anti-fungal host defenses. This study demonstrates key functions for GSDMD in Candida's escape from host immunity in vitro and in vivo and suggests that GSDMD may be a potential therapeutic target in C. albicans-induced sepsis.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Inflamassomos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Macrófagos/imunologia , Proteínas de Ligação a Fosfato/imunologia , Animais , Candida albicans/fisiologia , Candidíase/genética , Candidíase/microbiologia , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estimativa de Kaplan-Meier , Rim/imunologia , Rim/metabolismo , Rim/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
3.
Sci Adv ; 6(1): eaaw6443, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911938

RESUMO

Regulatory T cell (Treg) activation and expansion occur during neonatal life and inflammation to establish immunosuppression, yet the mechanisms governing these events are incompletely understood. We report that the transcriptional regulator c-Myc (Myc) controls immune homeostasis through regulation of Treg accumulation and functional activation. Myc activity is enriched in Tregs generated during neonatal life and responding to inflammation. Myc-deficient Tregs show defects in accumulation and ability to transition to an activated state. Consequently, loss of Myc in Tregs results in an early-onset autoimmune disorder accompanied by uncontrolled effector CD4+ and CD8+ T cell responses. Mechanistically, Myc regulates mitochondrial oxidative metabolism but is dispensable for fatty acid oxidation (FAO). Indeed, Treg-specific deletion of Cox10, which promotes oxidative phosphorylation, but not Cpt1a, the rate-limiting enzyme for FAO, results in impaired Treg function and maturation. Thus, Myc coordinates Treg accumulation, transitional activation, and metabolic programming to orchestrate immune homeostasis.


Assuntos
Ácidos Graxos/metabolismo , Terapia de Imunossupressão , Inflamação/imunologia , Proteínas Proto-Oncogênicas c-myc/genética , Linfócitos T Reguladores/imunologia , Alquil e Aril Transferases/imunologia , Animais , Animais Recém-Nascidos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Citometria de Fluxo , Homeostase/imunologia , Inflamação/genética , Proteínas de Membrana/imunologia , Camundongos , Oxirredução , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-myc/imunologia , Linfócitos T Reguladores/metabolismo
4.
J Exp Med ; 215(6): 1519-1529, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29793924

RESUMO

Pyroptosis is an inflammasome-induced lytic cell death mode, the physiological role of which in chronic inflammatory diseases is unknown. Familial Mediterranean Fever (FMF) is the most common monogenic autoinflammatory disease worldwide, affecting an estimated 150,000 patients. The disease is caused by missense mutations in Mefv that activate the Pyrin inflammasome, but the pathophysiologic mechanisms driving autoinflammation in FMF are incompletely understood. Here, we show that Clostridium difficile infection of FMF knock-in macrophages that express a chimeric FMF-associated MefvV726A Pyrin elicited pyroptosis and gasdermin D (GSDMD)-mediated interleukin (IL)-1ß secretion. Importantly, in vivo GSDMD deletion abolished spontaneous autoinflammatory disease. GSDMD-deficient FMF knock-in mice were fully protected from the runted growth, anemia, systemic inflammatory cytokine production, neutrophilia, and tissue damage that characterize this autoinflammatory disease model. Overall, this work identifies pyroptosis as a critical mechanism of IL-1ß-dependent autoinflammation in FMF and highlights GSDMD inhibition as a potential antiinflammatory strategy in inflammasome-driven diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Febre Familiar do Mediterrâneo/metabolismo , Febre Familiar do Mediterrâneo/patologia , Inflamação/metabolismo , Inflamação/patologia , Animais , Clostridioides difficile/fisiologia , Citocinas/biossíntese , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Neutrófilos/patologia , Proteínas de Ligação a Fosfato , Pirina/metabolismo , Pirina/farmacologia , Piroptose , Baço/patologia , Síndrome de Emaciação/patologia
5.
Epigenetics ; 11(5): 381-8, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909551

RESUMO

Autophagy is a biological process characterized by self-digestion and involves induction of autophagosome formation, leading to degradation of autophagic cargo. Aging is associated with the reduction of autophagy activity leading to neurodegenerative disorders, chronic inflammation, and susceptibility to infection; however, the underlying mechanism is unclear. DNA methylation by DNA methyltransferases reduces the expression of corresponding genes. Since macrophages are major players in inflammation and defense against infection we determined the differences in methylation of autophagy genes in macrophages derived from young and aged mice. We found that promoter regions of Atg5 and LC3B are hypermethylated in macrophages from aged mice and this is accompanied by low gene expression. Treatment of aged mice and their derived macrophages with methyltransferase inhibitor (2)-epigallocatechin-3-gallate (EGCG) or specific DNA methyltransferase 2 (DNMT2) siRNA restored the expression of Atg5 and LC3 in vivo and in vitro. Our study builds a foundation for the development of novel therapeutics aimed to improve autophagy in the elderly population and suggests a role for DNMT2 in DNA methylation activities.


Assuntos
Envelhecimento/genética , Proteína 5 Relacionada à Autofagia/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Proteínas Associadas aos Microtúbulos/genética , Envelhecimento/patologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Catequina/administração & dosagem , Catequina/análogos & derivados , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , RNA Interferente Pequeno/genética
6.
PLoS One ; 11(1): e0146410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26741365

RESUMO

L. pneumophila is the causative agent of Legionnaires' disease, a human illness characterized by severe pneumonia. In contrast to those derived from humans, macrophages derived from most mouse strains restrict L. pneumophila replication. The restriction of L. pneumophila replication has been shown to require bacterial flagellin, a component of the type IV secretion system as well as the cytosolic NOD-like receptor (NLR) Nlrc4/ Ipaf. These events lead to caspase-1 activation which, in turn, activates caspase-7. Following caspase-7 activation, the phagosome-containing L. pneumophila fuses with the lysosome, resulting in the restriction of L. pneumophila growth. The LegS2 effector is injected by the type IV secretion system and functions as a sphingosine 1-phosphate lyase. It is homologous to the eukaryotic sphingosine lyase (SPL), an enzyme required in the terminal steps of sphingolipid metabolism. Herein, we show that mice Bone Marrow-Derived Macrophages (BMDMs) and human Monocyte-Derived Macrophages (hMDMs) are more permissive to L. pneumophila legS2 mutants than wild-type (WT) strains. This permissiveness to L. pneumophila legS2 is neither attributed to abolished caspase-1, caspase-7 or caspase-3 activation, nor due to the impairment of phagosome-lysosome fusion. Instead, an infection with the legS2 mutant resulted in the reduction of some inflammatory cytokines and their corresponding mRNA; this effect is mediated by the inhibition of the nuclear transcription factor kappa-B (NF-κB). Moreover, BMDMs infected with L. pneumophila legS2 mutant showed elongated mitochondria that resembles mitochondrial fusion. Therefore, the absence of LegS2 effector is associated with reduced NF-κB activation and atypical morphology of mitochondria.


Assuntos
Aldeído Liases/genética , Resistência à Doença/genética , Legionella pneumophila/fisiologia , Doença dos Legionários/imunologia , Lisofosfolipídeos/metabolismo , Macrófagos/imunologia , Fagossomos/metabolismo , Esfingosina/análogos & derivados , Aldeído Liases/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/patogenicidade , Doença dos Legionários/genética , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Lisofosfolipídeos/imunologia , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fusão de Membrana , Camundongos , Camundongos Endogâmicos NOD , NF-kappa B/genética , NF-kappa B/metabolismo , Fagossomos/imunologia , Fagossomos/microbiologia , Transdução de Sinais , Especificidade da Espécie , Esfingosina/imunologia , Esfingosina/metabolismo
7.
Sci Rep ; 5: 18479, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686473

RESUMO

Inflammasomes are multiprotein complexes that include members of the NOD-like receptor family and caspase-1. Caspase-1 is required for the fusion of the Legionella vacuole with lysosomes. Caspase-11, independently of the inflammasome, also promotes phagolysosomal fusion. However, it is unclear how these proteases alter intracellular trafficking. Here, we show that caspase-11 and caspase-1 function in opposing manners to phosphorylate and dephosphorylate cofilin, respectively upon infection with Legionella. Caspase-11 targets cofilin via the RhoA GTPase, whereas caspase-1 engages the Slingshot phosphatase. The absence of either caspase-11 or caspase-1 maintains actin in the polymerized or depolymerized form, respectively and averts the fusion of pathogen-containing vacuoles with lysosomes. Therefore, caspase-11 and caspase-1 converge on the actin machinery with opposing effects to promote vesicular trafficking.


Assuntos
Actinas/metabolismo , Caspase 1/genética , Cofilina 1/genética , Doença dos Legionários/genética , Fosfoproteínas Fosfatases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/genética , Animais , Caspase 1/metabolismo , Cofilina 1/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Doença dos Legionários/patologia , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Vacúolos/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA